
Eur. Phys. J. B 60, 193–201 (2007)
DOI: 10.1140/epjb/e2007-00330-1 THE EUROPEAN

PHYSICAL JOURNAL B

Quantum tomography with wavelet transform in Banach space
on homogeneous space

M. Mirzaee1,a, M. Rezaei2,b, and M.A. Jafarizadeh2,3,4,c

1 Department of Physics, Arak University, Arak, Iran
2 Department of Theoretical Physics and Astrophysics, Tabriz University, Tabriz, 51664, Iran
3 Institute for Studies in Theoretical Physics and Mathematics, Tehran 19395-1795, Iran
4 Research Institute for Fundamental Sciences, Tabriz 51664, Iran

Received 25 September 2006 / Received in final form 30 April 2007
Published online 8 December 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. In this study the intimate connection is established between the Banach space wavelet recon-
struction method on homogeneous spaces with both singular and nonsingular vacuum vectors, and some
of the well known quantum tomographies, such as: Moyal-representation for a spin, discrete phase space
tomography, tomography of a free particle, Homodyne tomography, phase space tomography and SU(1,1)
tomography. And both the atomic decomposition and the Banach frame nature of these quantum tomo-
graphic examples are also revealed in details. Finally the connection between the wavelet formalism on
Banach space and Q-function is discussed.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ
states, etc.)

1 Introduction

The mathematical theory of wavelet transform has re-
cently gained considerable success in various fields of sci-
ence and technology, including the treatment of large
databases, data and image compression, signal processing,
telecommunications and many other applications [1–3].
After Morlet’s empirical discovery [4], Grossmann et al.
[5,6] and Daubechies [7] recognized from the very begin-
ning that wavelets are simply coherent states associated
with affine group of the line (dilations and translations).
Thus, immediately the stage was set for a far reaching
generalization [7,8].

Unlike the Haar functions which form an orthogonal
basis, Morlet wavelets are not orthogonal and form frames.
Frames are sets of functions which are not necessarily or-
thogonal and which are not linearly independent. Actu-
ally, a frame for a Hilbert space is a redundant set of
vectors (overcomplete) which yield, in a stable way, a rep-
resentation for each vector in the space [9].

Recently another concept called the atomic decompo-
sition has played a key role in the further mathematical
development of the wavelet theory. Indeed the atomic de-
composition for any space of function or distribution aims
to represent any element in the form of a set of simple
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functions which are called atoms [10]. As far as the Banach
space is concerned, Feichtinger-Grochenig [11] provided a
general and very flexible way to construct coherent atomic
decompositions and the Banach frames for certain Banach
spaces, called coorbit spaces.

The concept of a quantum state represents one of
the most fundamental pillars of the paradigm of quan-
tum theory. Usually the quantum state is described ei-
ther by the state vector in Hilbert space, the density op-
erator, or a phase space probability density distribution
(quasi-distributions). The quantum states can be deter-
mined completely from the appropriate experimental data
by using the well-known technique of the quantum tomog-
raphy or better to say the tomographic transformation.

A general framework is already presented for the unifi-
cation of the Hilbert space wavelets transformation on one
hand, and the quasi-distributions and the tomographic
transformation associated with a given pure quantum
states on the other hand [12]. Here in this manuscript it
has been attempted to establish the intimate connection
between the Banach space wavelet method developed by
Feichtinger-Grochenig [11] and Kisil [13] and some of the
well-known quantum tomographies associated with the
mixed states.

The density matrix can be presented in the Banach
space in quantum physics [14]. Therefore, it is natural to
do quantum tomography of each density matrix by using
the wavelet transform and its inverse in the Banach space
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on homogeneous space associated with the correspond-
ing density matrix. This obtained quantum tomography
by the Banach space wavelet method for density states
is completely consistent with the quantum tomography
obtained by other methods. Both the atomic decomposi-
tion and the Banach frame nature of these quantum to-
mographic examples are also revealed in detail.

The organization of the paper is as follows: First the
definition of the wavelet transform and its inverse on
homogeneous spaces with both singular and nonsingular
vacuum vectors are given. Then we obtain some typical
quantum tomographic examples with nonsingular vacuum
vectors, such as: Moyal-representation for a spin, discrete
phase space tomography, and as result we present their
atomic decomposition and their Banach frame bounds. Af-
ter that some typical quantum tomographic examples with
singular vacuum vectors, such as: Homodyne tomography,
phase space tomography, SU(1,1) tomography and tomog-
raphy of a free particle are obtained. And later its atomic
decomposition and Banach frame bounds is presented. Fi-
nally, the connection between the wavelet formalism on
the Banach space and Q-function is discussed. The paper
ends with a brief conclusion.

2 Wavelet transform, frame and atomic
decomposition in Banach spaces
on homogeneous space

The following is a brief recapitulation of some aspects of
the theory of wavelets, the atomic decomposition and the
Banach frame on homogeneous space. We have only men-
tioned the concepts which are needed in the sequel, a more
detailed treatment can be found in [11,13]. Let G be a lo-
cally compact group and H be its closed normal subgroup.
Let X = G/H be the corresponding homogeneous space
with an invariant measure dµ and since in general the rep-
resentation is not directly defined on X , x ∈ G/H can be
defined only after an embedding σ : G/H → G which is
fixed in the principal bundle G → G/H .

In this part of our discussions for simplicity, we write
U(x) instead of U(σ(x)), for a fixed section σ : G/H → G.
Given a Banach space B, we could define a new representa-
tion π for embedding X×X in the space L(B) of bounded
linear operators B → B, let U be a continuous representa-
tion of a group:

π : X × X → L(L(B)) : Ô → U(x1)ÔU(x−1
2 ), (2.1)

where if x1 is equal to x2, the representation is called an
adjoint representation, and, if x2 is equal to the identity
operator, the representation is called a left representation
of the homogeneous space.

Let L(B) be the space of the bounded linear operators
B → B in the Banach space, we will say that b0 ∈ B
is a vacuum vector if for all h ∈ H1 × H2 with normal
subgroups H1 and H2 we have π(h)b0 = χ(h)b0 where χ
is a character of the subgroup H and also the set of vectors
bx1,x2 = π(x1, x2)b0 forms a family of coherent states, if

there exists a continuous non-zero linear functional l0 ∈ B∗
(called test functional where B∗ is dual of B) such that

C(b0, b
′
0) =∫

X

∫
X

〈π(x−1
1 , x−1

2 )b0, l0〉〈π(x1, x2)b
′
0, l

′
0〉dµ(x1, x2),

(2.2)

is non-zero and finite, which is known as the admissibility
relation.

If the subgroup H is non-trivial, one does not need to
know the wavelet transform on the whole group G, but it
should be defined on only the homogeneous space G/H ,
then the reduced wavelet transform W to a homogeneous
space of the function L2 is defined by a representation π
of X×X on B and a test functional l0 ∈ B∗ such that [13]

W : B → L2(X × X) : Ô → Ô(x1, x2) = [WÔ](x1, x2)

= 〈π(x−1
1 , x−1

2 )Ô, l0〉 = 〈Ô, π∗(x1, x2)l0〉 ∀x1, x2 ∈ X,
(2.3)

where π∗ is dual of π. The inverse wavelet transform M
with a vacuum vector b0 ∈ B from L2(X × X) to B is
given by the formula:

M : L2(X × X) → B : Ô(x1, x2) → M[Ô]

MW(Ô) =
∫

X

∫
X

Ô(x1, x2)bx1,x2dµ(x1, x2)

=
∫

X

∫
X

Ô(x1, x2)π(x1, x2)b0dµ(x1, x2). (2.4)

The operator PI = MW : B �−→ B is a projection of
B into the linear subspace in which b0 is cyclic (i.e., the
set {π(x1, x2)b0|x1, x2 ∈ X} spans the Banach space B),
and MW(Ô) = P (Ô) in which the constant P is equal to
C(b0,b

′
0)

〈b0,l
′
0〉

. There are two different cases which correspond
to different choices of the vacuum vector:

a) Non-singular cases

In this case, π is an irreducible representation, then the
inverse wavelet transform M is a left inverse operator on
B for the wavelet transform W i.e., MW=I for which ad-
missibility relation (2.2) holds and the vector b0 can be
found in B.

b) Singular cases

In this case the representation π of G is neither a square-
integrable nor a square-integrable modulo of a subgroup
H . Therefore, the vacuum vector b0 could not be selected
within the original Banach space B (the representation
space of U ). Then, in the singular case, we assume that
there is a probe vector p0 ∈ B where the following integral
converges:

C(b0, p0) =〈∫
X

∫
X

〈π(x−1
1 , x−1

2 )p0, l0〉π(x1, x2)b0dµ(x1, x2), l0

〉
.

(2.5)
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The choice of a probe vector is similar to regulariza-
tion [25], which has been used in our calculations. Ac-
cording to the theory of distributions, the smoothness,
regularity, and localization of a tempered distribution can
be improved by a function of the Schwartz class. Various
regulators can be used for numerical computations.

The frames can be seen as a generalization of bases in
the Hilbert or the Banach space [10]. The Banach frames
and the atomic decomposition are sequences that have
basis-like properties but which need not to be bases. The
atomic decomposition has played a key role in the recent
development of the wavelet theory.

Now we define a decomposition of a Banach space on
homogeneous space as follow:
The definition of the coorbit space. Let B be a Ba-
nach space. The coorbit space is the collection of all func-
tions for which the wavelet transform is contained in L2.
Similar to the definition of the coorbit space in the group,
we can define the coorbit spaces for X = G/H as [24]:

M2 = {Ô ∈ B : WÔ ∈ L2} with norm

||Ô||M2 = ||WÔ||L2 . (2.6)

The definition of the atomic decomposition. Let M2

be a coorbit space and let L2 be an associated Banach
space. Let {yi,j = π∗(xi, xj)l0} and {b̂i,j = π(xi, xj)b0}
be given. The set [24] ({yi,j}, {bi,j}) is an atomic decom-
position of B with respect to L2 and, the norm equivalence
is given by:

A‖Ô‖M2 ≤ ‖{〈Ô, yi,j〉}‖L2 ≤ B‖Ô‖M2 , (2.7)

then A, B are a choice of the atomic bounds for
({yi,j}, {bi,j}). And Ô =

∑∞
i,j=1〈O, yij〉bij for each Ô.

The definition of the Banach frame. Let T is a
bounded linear operator such that T {〈Ô, yi,j〉} = Ô for
each Ô ∈ M2.
Then ({yi,j}, T ) is a Banach frame for M2 with respect to
L2. The mapping T is a reconstruction operator (inverse
wavelet transform). If the norm equivalence is given by
A‖Ô‖M2 ≤ ‖{〈Ô, yi,j〉}‖L2 ≤ B‖Ô‖M2 , then A, B are a
choice of the frame bounds for ({yi,j}, T ).

It is a remarkable fact that the admissibility condition
is an analogous relation to the existence of frame bounds.

From the definition of the Banach frame all of the
states that define a separated set {yi,j} are a set of sam-
pling for L2 if and only if the set of {yi,j} is a frame for L2.
It is inferred from frame theory that there exists a dual
frame {bi,j} ⊂ L2 that allows us to reconstruct functions
{Ôi,j = 〈Ô, yi,j〉} ⊂ L2 explicitly as

MWÔ =
∑
i,j

〈Ô, yi,j〉bi,j , (2.8)

where MW is a map from M2 to M2 then S = MW
is a frame operator similar to the definition of the frame
operator in the Hilbert space [10]. The frame condition
can be expressed in terms of the frame operator as:

AI ≤ S ≤ BI. (2.9)

Now according to the Schur’s lemma a representation that
commutes with all irreducible representations must be a
constant multiple of the identity. This lemma reduces to
an orthogonality relation and the resolution of the iden-
tity for any coherent state. In other cases if b0 is cyclic
it satisfies the resolution of the identity. Then if the rep-
resentation be irreducible or b0 is cyclic, S = MW is
proportional to the identity. Therefore, frame bounds A,
B are constant (tight frame) [8].

3 Quantum tomography with wavelet
transform on homogeneous space
(non-singular case)

3.1 Moyal-type representations for a spin

For a spin s, in [15] a ‘Stratonovich-Weyl’ correspondence
as a rule which maps each operator Ô on the (2s + 1)-
dimensional Hilbert space Hs to a function on the phase
space of the classical spin, S2 is defined. A discrete Moyal
formalism is defined as [16].

∆̂ns = Ûn∆̂nzsÛ
†
n, (3.1)

where Ûn represents a rotation which maps the vector nz

to n.
The associated kernels are defined as

∆̂ns = |s,n〉〈s,n| ≡ |n〉〈n|, (3.2)

∆̂ns =
s∑

m=−s

∆m|m,n〉〈m,n|. (3.3)

In the wavelet notation, the Banach space is (2s + 1)2-
dimensional and the group is SU(2), the subgroup is U(1)
and the measure is dµ(n) = 2s+1

4π d(n) and the unitary
irreducible representation of the group is Un which is the
result of the adjoint representation on any operators in
the Banach space:

π̂(n)Ô = ÛnÔÛ †
n. (3.4)

Then the wavelet transform in this Banach space with the
test functional,

l0(Ô) = Tr

(
Ô

∑
m

∆m|m, nz〉〈m, nz|
)

, (3.5)

is given by:

W ρ̂ = ρ̂(n) = 〈 ˆπ(n)
†
Ô, l0〉

= Tr

(
Ûn

†
ÔÛn

∑
m

∆m | m, nz〉〈m, nz |
)

, (3.6)

then we have:

Ô(n)=Tr

(
ÔÛn

∑
m

∆m | m, nz〉〈m, nz | Ûn
†
)=Tr(Ô∆̂ns

)
.
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If we choose the vacuum vector b0 = | s, nz〉〈s, nz |, the
inverse wavelet transform M becomes the left inverse op-
erator of the wavelet transform W :

MW ρ̂ =
∫
〈π̂†(n)Ô, l0〉 ˆπ(n)b0

=
∫

dµ(n)Tr(Ô∆̂ns)Ûn |s, nz〉〈s, nz | Ûn
†

⇒ Ô =
1
P

(
2s + 1

4π

∫
dnTr(Ô∆̂ns)∆̂ns

)
. (3.7)

By using the relations:

2s + 1
4π

∫
S2

dn Tr
[
∆̂ms∆̂

ns
]
∆̂ns = ∆̂ms,

and

Tr
[
∆̂nzs∆̂

ns
]

=
2s∑

l=0

2l + 1
2s + 1

Pl(cos θ),

one can show that the constant on the left hand side
of (2.2) is

C(b0, b
′
0) =

∫
X

〈π̂†|s, nz〉〈s, nz|, l0〉〈π̂|s, nz〉〈s, nz|, l0〉dµ(n),

now using definitions (3.4) and (3.5) we have

C(b0, b
′
0) =∫

X

〈Ûn
†|s, nz〉〈s, nz |Ûn, l0〉〈Ûn|s, nz〉〈s, nz|Ûn

†
, l0〉dµ(n)

=
∫

tr(∆̂nzs∆̂
ns)tr(∆̂nzs∆̂ns)dµ(n)

= tr(∆̂nzs∆̂nzs) = 2s + 1,

then the constant P = C(b0,b′0)
〈b0,l0〉 = 1, and finally the recon-

struction procedure of the wavelet transform (operating
the combination of the wavelet transform and its inverse
one, MW on the operator Ô) leads to the following to-
mography relation:

Ô =
(2s + 1)

4π

∫
S2

dnTr[Ô∆̂ns]∆̂ns. (3.8)

By the same choice as above for the vacuum vectors and
test functions, we can get the atomic decomposition and
the Banach frame for this example. Then we can show the
following conditions:

The norms ||Ô||M2 and ||{Tr(π̂†(n)Ô)}|| =

[
∫

Tr(π̂†(n)Ô)Tr(π̂†(n)Ô)dµ(n)]
1
2

are equivalent since

||{Tr(π̂†(n)Ô)}|| =
[∫

Tr(π̂†(n)Ô)Tr(π̂†(n)Ô)dµ(n)
] 1

2

= |
∫

tr(π†(n)Ô)tr(π(n)Ô†)dµ(n)|1/2

=
∣∣∣∣tr

(∫
tr(π†(n)Ô)π(n)dµ(n)Ô†

)∣∣∣∣
1/2

,

if we use the tomography relation (3.8) we obtain

||{Tr(π̂†(n)Ô)}|| = |tr(ÔÔ†)|1/2 = ||Ô||,
such that they can saturate the inequality (2.7) with the
atomic bounds A = B = 1, provided that we use the the
Hilbert-Schmidt norm for the operator Ô and if we use
the relation (3.8) we have:

Ô =
∫

Tr(π̂†(n)Ô)π̂(n)b0dµ(n)

Therefore, {π̂(n)b0, π̂(n)l0} is an atomic decomposition of
M2 of bounded operators acting on representation space
with respect to L2 with atomic bounds A = B = 1.

Finally, for the Banach frame we use the same choice of
the vacuum vector and the test functional as in the atomic
decomposition case. In order to have the Banach frame
condition for the existence of the atomic decomposition,
we can define the reconstruction operator T as follows:

T {Tr(π̂†(n)Ô)} =
∫

Tr(π̂†(n)Ô)π̂(n)dµ(n) = Ô

for each Ô ∈ M2.

It is straightforward to show that the operator T as
defined above is a linear bounded operator. Therefore,
{π̂(n)l0, T } is a Banach frame for M2 with respect to L2

with frame bounds A = B = 1.

3.2 Discrete phase space tomography

In [17] the formalism was applied to represent the states
and the evolution of a quantum system in the phase space
in the finite dimensional Hilbert space. For discrete sys-
tems we can define the finite translation operators Q̂ and
V̂ , which respectively generate the finite translation in
position and momentum. Now by identifying the corre-
sponding displacement operators, the discrete analogue of
the phase space translation operator is given by:

Û(q, p) = Q̂qV̂ p exp(iπpq/N). (3.9)

Here we can define the point operator as:

Â(q, p) =
1

(2N)2

2N−1∑
n,m=0

Û(m, k) exp
(
−2πi

(kq − mp)
2N

)
,

(3.10)
or:

Â(α) =
1

2N
Q̂qR̂V̂ −p exp(iπpq/N), (3.11)

where R̂ is a parity operator and it is worth noting that the
phase space point operators have been defined on a lattice
with 2N × 2N points, but it has been shown that there
are only N2 independent phase space point operators on
the set GN = {α = (q, p); 0 ≤ q, p ≤ N − 1}.

Now in order to obtain the tomography equation via
the wavelets transform in Banach space we can define: the
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group, the subgroup and the representation are respec-
tively the finite Heisenberg group, its center and U(α).
Then the wavelet transform with the test functional

l0(O) = Tr(O) for any operator O,

is given by

W ρ̂ = ρ̂(α) = 〈ρ̂, lα〉 = Tr(Û †(α)ρ̂). (3.12)

Since the representation is an irreducible representation,
the inverse wavelet transform M will be the left inverse
operator of wavelet transform W :

MWρ̂ =
∑

α∈GN

〈ρ̂, lα〉bα =
∑

α∈GN

〈Û †(α)ρ̂, l0〉Û(α)b0.

(3.13)
We can obtain the tomography relation as follows:

ρ̂ = 1/N
∑

α∈GN

Tr(ρ̂Û †(α))Û (α)

= 4N
∑

α∈GN

Tr(ρ̂Â(α))Â(α), (3.14)

where W (α) = Tr(Â(α)ρ̂) is a Wigner function, for the
admissible b0 = I/N .

Through the same choice as above for the vacuum vec-
tor and the test functions, we can get the atomic decom-
position and the Banach frame for this example. Then we
can show that:

The norms ||ρ̂||M2 and ||{Tr(ρ̂Û †(α))}|| are equivalent
since

||{Tr(Û †(α)Ô)}|| =
[∫

Tr(Û †(α)Ô)Tr(Û †(α)Ô)dµ(α)
] 1

2

=
∣∣∣∣
∫

tr(U †(α)Ô)tr(U(α)Ô†)dµ(α)
∣∣∣∣
1/2

=
∣∣∣∣tr

(∫
tr(U †(α)Ô)U(α)dµ(α)Ô†

)∣∣∣∣
1/2

,

if we use the tomography relation (3.14) we obtain

||{Tr(Û †(α)Ô)}|| = |tr(NÔÔ†)|1/2 =
√

N ||Ô||.
Therefore they saturate the inequality (2.7) with the
atomic bounds A = B =

√
N , provided that we use the

Hilbert-Schmidt norm for the operator Ô. Also if we use
the relation (3.11), we have,

ρ̂ =
∑

α

Tr(ρ̂Û †(α)) ˆU(α)b0,

hence { ˆU(α)b0, ˆU(α)l0} is a linear atomic decomposition
of M2 with respect to L2.

Finally, we can define the reconstruction operator T
as follows:

T {Tr(ρ̂Û †(α))} =
∑

α

Tr(ρ̂Û †(α)) ˆU(α) = ρ̂

for each ρ̂ ∈ M2 therefore, { ˆU(α)l0, T } is a Banach frame
for M2 with respect to L2 with the frame bounds A =
B =

√
N .

4 Quantum tomography with wavelet
transform on homogeneous space
(singular case)

4.1 Homodyne tomography

The problem of measuring the density matrix ρ̂ of ra-
diation has been extensively considered both experimen-
tally and theoretically [22]. The Homodyne tomography is
rather the only method that can be used to achieve such
measurement [19]. This method is based on the idea that
the density matrix for the radiation states can be eval-
uated in the optical Homodyne experiments by using a
collection of the quadrature probability distribution.

Now we wish to obtain the tomography equation via
the wavelets transform in the Banach space. Obviously
the group is the Heisenberg group HR. Since the repre-
sentation of HR fails to be square-integrable, according
to Stone-Von Neumann [23], we can factor out the center
HR and consider only the factor space.

For the vacuum vector and the test functional, we need
to choose the identity operator and l0(O) = Tr[O] for any
operator O, respectively. Then the wavelet formula for the
left translation is given by:

W ρ̂ = ρ̂(α) = 〈ρ̂, lα〉 = Tr(ρ̂Û(α)†), (4.1)

where Û(α) = exp(αa† −α∗a) is a displacement operator.
But the above reference state is not admissible. Thus ac-
cording to the prescription of singular cases, we have to
select a probe vector p0 ∈ B in which the equation (2.5)
is non-zero and finite. In this case, the probe vector can
be selected as:

p0 =
∫

| α〉〈α | e(−|α|2
∆ ) d

2α

π
, (4.2)

where ∆ is non-zero and finite and b0 ∈ B is an identity
operator. Since the representation is irreducible and

C(b0, p0) =〈∫
α

〈
U(α)†

∫
α′
|α′〉 〈α′| e

(
−|α′|2

∆

)
d2α′

π
, l0

〉
U(α)

d2α

π
, l0

〉

=
∫

α

∫
α′

tr

(
U †(α) | α′〉〈α′ | e

(
−|α′|2

∆

)
d2α′

π

)

× tr(U(α))
d2(α)

π
= ∆,

where tr(U(α)) = πδ2(α) then the inverse wavelet trans-
form in M is a left inverse operator on B for the wavelet
transform W :

MWρ̂ =
∫

dµ(α)〈ρ̂, lα〉bα =
∫

dµ(α)Tr(ρ̂Û †(α))Û (α)b0,

(4.3)
where dµ(α) = d2α

π is an invariant measure. For b0 = I,
the reconstruction procedure of wavelet transform (4.3)
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Table 1. The correspondence between different characteristic functions and representations.

charasteristic function representation quasi distribution function

Tr(ρ̂Ûan(α)) Ûan(α) = eαâ†
e−α∗â P-function

Tr(ρ̂Ûn(α)) Ûn(α) = e−α∗aeαa†
Q-function

Tr(ρ̂Ûh(α)) Ûh(ν) = e−ν∗beνb† Husimi function

(b̂ = µâ + νâ† and µ2 − ν2 = 1)

Tr(ρ̂Ûs(ξ.η)) Ûs(ξ.η) = eiξq̂eiηp̂ Standard-ordered function

Tr(ρ̂Ûas(ξ.η)) Ûas(ξ.η) = eiηp̂eiξq̂ Antistandard-ordered function

leads to the tomography relation:

ρ̂ =
∫
C

d2α

π
Tr[ρ̂Û †(α)]Û (α). (4.4)

In tomography relation (4.4), the expression Tr(ρ̂Û †(α))
is a Wigner characteristic function. We can also obtain
other quasi-distribution characteristic functions by choos-
ing different representations according to Table 1.

For the complex Fourier transform of the displacement
operator Û [18]

Û(α) =
∫

d2ξ

π
Û(ξ) exp(αξ∗ − α∗ξ), (4.5)

the expansion of the operator in terms of the operator
Û(α) is given by

ρ̂ =
∫

d2α

π
W (α)Û(α), (4.6)

where W (α) is a Wigner function. Also by defining the
complex Fourier transform for each of the above represen-
tations, we can get the tomography relation for each quasi-
distribution. Now we try to obtain the atomic decomposi-
tion and the Banach frame for this example. Applying the
same choice of the vacuum vector and the test functional
we can show that the required atomic decomposition con-
ditions are satisfied by the atomic bounds A = B = 1,
since we have

||{Tr(Û †(α)Ô)}|| =
[∫

Tr(Û †(α)Ô)Tr(Û †(α)Ô)dµ(α)
] 1

2

=
∣∣∣∣
∫

tr(U †(α)Ô)tr(U(α)Ô†)dµ(α)
∣∣∣∣
1/2

=
∣∣∣∣tr

(∫
tr(U †(α)Ô)U(α)dµ(α)Ô†

)∣∣∣∣
1/2

,

if we use the tomography relation (4.4) we obtain

||{Tr(Û †(α)Ô)}|| = |tr(ÔÔ†)|1/2 = ||Ô||.
Therefore, {Û(α)b0, Û(α)l0} is a linear atomic decomposi-
tion of M2 with respect to L2. Similarly, by using the rela-
tion (4.4) and definition T, {Û(α)b0, T } is a Banach frame
for M2 with respect to L2 with frame bounds A = B = 1.
We can also generalize the single mode Homodyne tomog-
raphy to a multimode state. In the wavelet notation, the

irreducible representation is Û = Û0

⊗
Û1

⊗
...

⊗
Ûm,

with Ûj = exp(zjâ
†
j − z∗j âj), and the tomography formula

with the vacuum vector b0 = Î
⊗

Î
⊗

...
⊗

Î is given by

ρ̂ =
∫
C

d2z0

π

∫
C

d2z1

π
· · ·

∫
C

d2zm

π

× Tr[ρ̂Û †(z0, z1, ..., zm)]Û(z0, z1, ..., zm). (4.7)

The atomic decomposition and the Banach frame is sim-
ilar to a one mode Homodyne, and the frame bounds A,
B are equal to the identity.

4.2 Phase space tomography

Any marginal distribution is defined as the Fourier
transform of the characteristic function W(X, µ, ν) =∫

dke−ikX〈eik(µq̂+νp̂)〉. This marginal distribution is re-
lated to the state of the quantum system which is ex-
pressed in terms of its Wigner function W (q, p) [20], as
follows

W(X, µ, ν) =
∫

dke−ik(X−µq̂−νp̂)W (q, p)
dkdqdp

(2π)2
. (4.8)

Now we can obtain the tomography equation via wavelets
transform in the Banach space. Obviously the group is
the Heisenberg group in phase space. For the vacuum vec-
tor and the test functional we need to choose the identity
operator and l0(O) = Tr[O] for any operator O, respec-
tively. If we apply the reduced wavelet transform for the
left translation Û(µ, ν) = e−i(µq̂+νp̂), we have:

W ρ̂ = ρ̂(µ, ν) = 〈ρ̂, l(µ,ν)〉 = Tr(ρ̂Û †(µ, ν)). (4.9)

The vacuum vector b0 = Î is not admissible, then we
choose a probe vector with coherent states in the phase
space [8] which is a shifted Gaussian wave packet:

ησ(q,p)(x) = (π−1/4) exp
[
−i

(q

2
− x

)
p
]
exp

[
− (x − q)2

2

]

(4.10)

p0 =
∫

| ησ(q,p)〉〈ησ(q,p) | exp
[−(q2 + p2)

∆

]
dqdp, (4.11)

and the singularity condition gives C(b0, p0) = ∆.
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Since the representation is irreducible, the inverse
wavelet transform M is a left inverse operator on B for
the wavelet transform W :

MW ρ̂ =
∫

dµ(µ, ν)〈ρ̂, l(µ,ν)〉b(µ,ν)

=
∫

dµdνT r[ρ̂Û †(µ, ν)]Û(µ, ν)b0, (4.12)

Then for b0 = Î, we have:

ρ̂ =
∫

dµdνT r[ρ̂R̂†(µ, ν)]R̂(µ, ν)

=
∫

dµνTr[ρ̂ei(µq̂+νp̂)]e−i(µq̂+νp̂). (4.13)

With a simple calculation, we can obtain the tomography
relation as follows:

ρ̂ =
∫

dXdµdνW(X, µ, ν)K̂µν , (4.14)

where the kernel operator has the form:

K̂µν =
1
2π

eiXeiµνe−iνp̂e−iµq̂. (4.15)

The atomic decomposition and the Banach frame are sim-
ilar to a one mode Homodyne, and the frame bounds A,
B are equal to the identity.

4.3 SU(1,1) tomography

The Lie algebra su(1, 1) of the SU(1, 1) group is spanned
by the operators K̂+, K̂−, K̂z. The Casimir invariant op-
erator that labels all the unitary irreducible represen-
tations of the group is given by (K̂z)2 − 1/2(K̂+K̂− +
K̂−K̂+) = k(k + 1)Î, where the eigenvalue k is also called
the Bargmann index [21].

Now we obtain the tomography equation via the
wavelets transform in the Banach space. Obviously the
group is SU(1, 1), and the subgroup is U(1) with the ref-
erence state bo = I. By choosing

π̂∗(x) = û†(x)K̂z û(x), (4.16)

Û(x) = {(−1)K̂zeθ(eiφK̂+−e−iφK̂−), K̂z}+, (4.17)

where û(θ, φ) ≡ e−iθ/2(e−iφK̂++eiφK̂−)[21], the wavelet
transform is :

W ρ̂ = ρ̂(x) = 〈Û(x−1)ρ̂, l0〉 = 〈ρ̂, π∗(x)l0〉 = Tr[Û †(x)ρ],
(4.18)

and the inverse wavelet transform is shown by

MW [ρ̂] =
∫

X

ρ̂(x)bxdµ(x) =
∫

X

ρ̂(x)π(x)b0dµ(x),

(4.19)
where π̂∗(x) is dual of Û(x). The reference state is b0 = I
but this reference state is not admissible, therefore, again

according to the prescription of singular cases, we have to
select a probe vector p0 ∈ B in which equation (2.5) is
non-zero and finite. In this case, the probe vector can be
selected as

p0 =
∑

r

br | r〉〈r |, (4.20)

where this probe vector is similar to the thermal states
described by the density operator ρT

ρT =
1

1 + Ñ

∑
r

(
Ñ

1 + Ñ

)r

| r〉〈r |, (4.21)

with Ñ ≡ 〈ρT N〉 = 1
exp(�ω/KT )−1 , and N = a†a. At high

temperatures the thermal state is proportional with the
identity operator. Since the representation is irreducible
and C(b0, p0) = 1

1−b , the inverse wavelet transform in M is
a left inverse operator on B. Then the tomography formula
for SU(1, 1) group is given by

ρ̂ =
1
π

∫ 2π

0

dφ

∫ π

0

dθ tanh(θ)

× Tr[{(−1)K̂zeθ(e−iφK̂−−eiφK̂+), K̂z}+ρ̂]

× eiθ/2(e−iφK̂++eiφK̂−)K̂ze
−iθ/2(e−iφK̂++eiφK̂−).

(4.22)

Here we obtain the atomic decomposition and the Ba-
nach frame for this example. The norms ||ρ̂||M2 and
||{Tr(ρ̂B̂†(x))}|| are equivalent in the sense that they sat-
isfy the inequality (2.7) with the atomic bounds A = B =
1, provided that we use the Hilbert-Schmidt norm for the
operator ρ̂

||Tr(ρ̂Û †(x))||2 =
∫

dµ(x)Tr(ρ̂Û †(x))Tr(ρ̂π̂∗(x)),

(4.23)
Since the dual couple Û(x) and π̂∗(x) satisfy the orthog-
onality relation [21]:

δmkδnl =
∫

dµ(x)〈m|B†(x)|n〉〈l|C(x)|k〉,

then;

||Tr(ρ̂Û †(x))||2 =
∫

dµ(x)ρmnU∗
mn(x)ρ∗klπkl(x) = ||ρ̂||2,

and if we use the relation (4.22), we have:

ρ̂ =
∫

dµ(x)Tr(ρ̂Û †(x))π̂∗(x),

Therefore, {π̂∗(x)b0, π̂
∗(x)l0} is an atomic decomposition

of M2 with respect to L2 with the atomic bounds A =
B = 1. Similar to the atomic decomposition, {π̂∗(x)l0, T }
is a Banach frame for the coorbit space of the operators
with respect to L2 with frame bounds A = B = 1.
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4.4 Tomography of a free particle

In this section we intend to consider the tomography of a
free particle. For simplicity we suppose a particle with a
unit mass and use the normalized unit �/2 = 1, so the free
Hamiltonian is given by ĤF = p̂2. The base is constituted
by the set of operators R̂(x, τ) = e−ip̂2τ |x〉〈x|eip̂2τ [18].

Again we try to obtain the tomography equation via
the wavelets transform in the Banach space. Obviously
the group is {P̂ , X̂, P̂ 2, I} and the subgroup is {X̂, I}.
The relevant representation for this example is an adjoint
representation:

π̂(x, τ)ρ̂= Û(x, τ)ρ̂Û−1(x, τ) with Û(x, τ) = e−iP̂ 2τ D̂(x).

In this representation, D̂(x) is a translation operator, such
that D̂(x)|0〉 = |x〉, where |x〉 is eigenstate of the position
operator and P̂ is the momentum operator. On the other
hand if we define:

〈ρ̂, l0〉 = l0(ρ̂) = Tr(ρ̂ | 0〉〈0 |),
the wavelet transform formula is given by:

W ρ̂ = ρ̂(x, τ) = 〈ρ̂, l(x,τ)〉 = Tr(ρ̂e−iP̂ 2τ | x >< x | eiP̂ 2τ ).
(4.24)

Also the inverse wavelet transform M associated with the
wavelet transform W is:

MW[ρ̂] =
∫

dµ(x, τ)〈ρ̂, l(x,τ) > b(x,τ)

=
∫

dxdτT r[ρ̂e−iP̂ 2τ | x〉〈x | eiP̂ 2τ ] ˆπ(x, τ)b0.

(4.25)

The vacuum vector is defined as b0 = |0〉〈0|, but it is
not admissible. Thus according to the prescription of the
singular cases, we have to select a probe vector p0 ∈ B in
which equation (2.5) is non-zero and finite. In this case,
the probe vector can be selected as

p0 =| D〉〈D |, (4.26)

where 〈D | p〉 = e−
p2

δ such that δ is a real and nonzero
parameter. Using the bi-orthogonality and the following
relations [18] (for |j〉, j = p1, p2, p3, p4)
∫

R

∫
R

dx dτ 〈p1|R̂(x, τ)|p2〉 〈p3|R̂(x, τ)|p4〉

=
∫

R

∫
R

dx dτ e−iτ(p2
2−p2

1+p2
3−p2

4) 〈p1|x〉〈x|p2〉 〈p3|x〉〈x|p4〉

=
∫

R

∫
R

dx dτ e−iτ(p2
2−p2

1+p2
3−p2

4) eix(p1−p2+p3−p4)

= δ(p1 − p3) δ(p2 − p4) (4.27)

we can show that the constant coefficient on the left
of (2.5) is C(b0, p0) = δ/2

√
π and finally the reconstruc-

tion procedure of the wavelet transform leads to the to-
mography relation as follow:

ρ̂ =
∫

R

∫
R

dx dτ p(x, τ) R̂(x, τ), (4.28)

where p(x, τ) = Tr[�̂ R̂(x, τ)] is the probability density
of the particle to be at position x at time τ . In order to
obtain the atomic decomposition and the Banach frame
for this example by the same choice of the vacuum vector
and the test functional, we can show that the required
atomic decomposition conditions are satisfied by atomic
bounds A = B = 1. Therefore, {π̂(x, τ)b0, π̂(x, τ)l0} is
a linear atomic decomposition of M2 with respect to L2.
Similarly, by using the relation (4.28) and the definition
T, {π̂(x, τ)b0, T } is a Banach frame for M2 with respect
to L2 with frame bounds A = B = 1.

4.5 Wavelet transform and Q-function

Let g ∈ L2(R) with ‖ g ‖= 1 and the time-frequency
translation of g be:

g[x1,x2](t) = e2πitx1g(t + x2) = U [x1, x2, 0]g(t), (4.29)

where U is the unitary irreducible representation of the
Heisenberg group HR. For an arbitrary function f ∈
L2(R), the pure state sampling [30] associated with it,
can be given in terms of inner product as:

F (x1, x2) = 〈f, g[x1,x2]〉, (4.30)

where g[x1,x2] = U [x1, x2]g(t) is a coherent state. In pure
states, the square of sampling is Q-function.

Now we try to obtain Q-function via wavelet and show
that the wavelet transform in the Banach space is a Q-
function. The group is the Heisenberg group and the sub-
group is the identity and the representation is an adjoint.
Then the wavelet transform is given by:

W ρ̂ = ρ̂(α) = 〈ρ̂, lα〉 = 〈π̂(α)†ρ̂, l0〉. (4.31)

On the other hand if we choose:

〈ρ̂, l0〉 = l0(ρ̂) = Tr[ρ̂|0〉〈0|], (4.32)

then the wavelet transform for the adjoint representation
is given by:

W ρ̂ = ρ̂(α) = Tr{π̂(g)†ρ̂|0〉〈0|}
= 〈0|Û(α)†(ρ̂)Û(α)|0〉 = 〈α|ρ̂|α〉 = Q(α).(4.33)

5 Conclusion

The intimate connection between the generalized wavelets
and its inverse in Banach space connected with the ho-
mogeneous manifolds, and quantum tomography of the
density operators is revealed. This connection is shown
in some well known physical quantum tomographic exam-
ples in details, further we introduce the Banach frame and
the atomic decomposition for each. We have also a estab-
lished a connection between the wavelet formalism on the
Banach space and Q-function.

We wish to express our sincere thanks to Dr H. Aslanabadi
for his patiently revising and editing the English text of the
article.
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